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Cross-correlation effects arising in methyl protons due to the si-
multaneous presence of dipole–dipole, chemical shift anisotropy,
and Curie spin relaxation mechanisms in paramagnetic systems are
analyzed. We assess the potential of obtaining structural constraints
from the cross-correlation of Curie spin relaxation with dipolar re-
laxation mechanisms among methyl proton spins. By theoretical
analysis and numerical simulations we characterize the transfer
functions describing the interconversion processes of different ranks
of multispin order. The time dependence of these processes contains
a new type of structural information, the orientation of the methyl
C3-axis with respect to the electron center. Experimental confirma-
tion is found for selected methyl groups in low spin Fe3+ sperm
whale myoglobin. C© 2002 Elsevier Science (USA)
1. INTRODUCTION

Cross-correlation phenomena due to the simultaneous pres-
ence of different nuclear magnetic relaxation mechanisms of
the same tensorial rank have been well known since the studies
of Shimizu (1 ) and Blicharski (2, 3 ). Cross-correlation terms
among chemical shift anisotropy (CSA), dipole–dipole interac-
tions (DD), and quadrupolar interactions have been thoroughly
investigated in theory and by experiments (4–7 ). In a weakly
coupled spin system the presence of such interference terms
causes the creation of longitudinal multispin orders, like two
(2I1z I2z)-, three (4I1z I2z I3z)-spin order terms by longitudinal
relaxation (4 ). Evolution of these multispin orders, which affect
both T1 and NOE measurements, can be monitored in multiple-
quantum-filtered experiments (8–10 ). In the case of transverse
relaxation the effect of these cross-terms is differential relaxation
and consequentially differential broadening of the multiplet
components (11–13 ). Interference effects involving an addi-
tional relaxation mechanism, Curie spin relaxation (CSR), aris-
ing due to the presence of unpaired electron spins (14, 15 ) in
paramagnetic systems has been the subject of recent investiga-
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tions (16–18 ). Although dipolar in character, cross-correlation
terms of CSR with internuclear dipolar relaxation mechanism
leads to creation of two-spin order, since the spin part of CSR
is analogous to that of CSA (19 ). Cross-correlation effects in
general and that involving CSR in particular become more sig-
nificant at higher magnetic fields.

Despite the fact that paramagnetic relaxation of nuclear
spins has been the subject of a large number of NMR stud-
ies since 1950, many of its facets are gaining renewed impor-
tance currently. Following the seminal work of Solomon (20 )
and Solomon and Bloembergen (21 ), the role of CSR was high-
lighted by Gueron (14 ) and Vega and Fiat (15 ). Cross-correlation
effects of CSR can give rise to substantial relaxation-allowed co-
herence transfer (RACT) peaks as was shown by Bertini et al.
(16 ) and Qin et al. (17 ). The effects of the interference terms
involving CSR in various motional regimes have been described
in recent works where direct bearing of CSR on structure eluci-
dation has been envisioned (18, 22–24 ).

Recently, substantial interest in cross-correlation phenomena
has been generated with the finding that they can be exploited
to arrive at structural constraints (25–27 ). This approach can be
adapted to paramagnetic systems as CSR cross-terms carry both
distance and angular information, the latter being a new type of
structural constraint for methyl groups. Such structural refine-
ments can contribute substantially to studies of paramagnetic
samples which are otherwise impeded by line broadening due
to the fast relaxation of the nuclei in the presence of an unpaired
electron center.

In a previous paper we have pointed out the significance of
CSR in giving rise to characteristic relaxation patterns of methyl
groups in a paramagnetic protein, namely, horse radish perox-
idase (HRP), which is probably the first observation of CSR
cross-correlation effects involving methyl groups (28 ). Here we
analyze the relaxation of methyl groups in the presence of a
paramagnetic center, expand the observations and conclusions
presented in the previous article (28 ), and propose new appli-
cations for molecular geometry refinement. Following the theo-
retical treatment of the CSR phenomenon in methyl protons, we
will show how its cross-correlation with the DD mechanism can
lead to useful orientational constraints for methyl groups with a
C3-axis orientation in paramagnetic molecules.
1090-7807/02 $35.00
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We start by discussing different mechanisms of paramagnetic
nuclear relaxation, the electron-nucleus hyperfine and the sus-
ceptibility contributions, their relative strengths in influencing
both longitudinal and transverse relaxation of protons, the in-
terference effects of CSR with internuclear dipolar relaxation
mechanism, and the characteristic spectral signatures and in-
formation content of such interference terms. In the discussion
we will make use of transfer functions derived from the Redfield
matrix to describe the interconversion of coherences and popula-
tions as in previous papers (28–30 ). Experiments on myoglobin
are then compared with numerical simulations of the transfer
functions. Finally, it will be shown that determining the transfer
functions allows one to derive novel structural constraints for
methyl groups in paramagnetic compounds.

2. PARAMAGNETIC RELAXATION

Nuclear relaxation in the presence of an unpaired electron
center is enhanced by the electron-nucleus hyperfine interaction
(31, 32 ) and the susceptibility contribution (14, 15 ). The sus-
ceptibility contribution is due to the dipolar coupling between
the nuclear spins and the thermally averaged electronic spin po-
larization. The latter being already an average is hence not mod-
ulated by the self-relaxation of the electron spin, but only by the
reorientational tumbling motion of the molecule and exchange
processes. This contribution gives rise to Curie spin relaxation.
The CSR mechanism arises via the reorientation of the �r con-
necting the nuclear I and the electronic Se spins, similar to the
way the DD mechanism acts between two nuclear spins. Hence
the CSR term is modulated by the same molecular tumbling that
modulates internuclear dipolar interaction attached to a rigid
molecular frame and thus cross-correlation can exist between
CSR and dipolar interactions among nuclear spins. Following
the definitions of Vega and Fiat (15 ), we designate the dipolar
contribution arising between nuclear and electron spins as DS (S-
contribution) and the CSR term as Dχ (χ -contribution). Both DS

and Dχ depend on the distance between the concerned nuclear
and electron spins while the Fermi contact term—characterized
by the isotropic scalar coupling constant, A—does not. In the
following discussion we assume the g tensor to be isotropic of
magnitude 2. Sternlicht (33 ) and, more recently, Vasavada and
Rao (34 ) and Bertini et al. (35 ) have discussed the implications
of an anisotropic g tensor and given the expression for the nu-
clear longitudinal and transverse relaxation times for a general
case. The deviations caused by the simplifications are smaller
than the experimental error.

In the presence of a paramagnetic center the nuclear
Hamiltonian for spin I takes the form

-hHI = ω0 Iz + HDD + HCSA +HCSR

+ K I · (DS) · Se + AI · Se, [1]
where I and Se correspond to the nuclear and the electronic
L, AND MÜLLER

spins, respectively, A is the isotropic scalar coupling constant;
and DS is the dipolar tensor which is traceless. HDD, HCSA, and
HCSR, respectively, represent the Hamiltonians corresponding
to dipolar interactions between nuclear spins, the CSA interac-
tion of the nuclear spin, and the CSR due to the electron center.
Since the role of the last two terms in Eq. [1] is mainly to enhance
the nuclear relaxation rates, they can be treated as random field
terms for all practical purposes following the definition of Vold
and Vold (36 ). Hence, they will not have any cross-correlation
term with the other interactions, unless one is dealing with very
small molecules. In the following treatment, the spectral densi-
ties corresponding to these are added to the diagonal elements
of the Redfield relaxation matrix (37 ). K is a constant given by

K = µ0

4π

γβm g

r3
, [2]

where γ is the gyromagnetic ratio of the protons, βm is the Bohr
magneton, and r is the distance between the centroid of the
unpaired electron center and the proton.

Cross-correlation terms exist among CSR, a rank 2 tensor, and
DD and CSA, which carry potentially useful structural informa-
tion. The relaxation enhancement from the hyperfine term has
been used successfully, albeit in a qualitative way, for insights
into solvent exposure and bleaching of the surface residues of
proteins (38 ). It may be also mentioned here that the contribu-
tion from the last term in Eq. [1] has proved to be of significance
only in cases of hindered methyl rotation as the scalar inter-
action can get modulated by intramolecular rotation as in the
case of methyl groups (15 ). Hence we do not take this term into
consideration in the simulations.

Since we are interested in multispin orders the system of
methyl protons is treated here as previously (30 ) as a quadrupo-
lar group of spin F = 3

2 in the symmetry-adapted base shown in
Fig. 1 (30 ). The Hamiltonian considered here for the purpose
of calculation where we treat only the CSR part of the para-
magnetic relaxation (as the hyperfine term contributes only to
autocorrelation) is given by (19, 39, 40 )

-hH(t) =
∑
i< j

HDD
i j + HCSA

i + HCSR
ie , [3]

FIG. 1. (a) Symmetry-adapted energy level diagram of a system of three
equivalent spins 1

2 corresponding to a CH3 group. The energy levels of the
three methyl protons are a superposition of one F = 3

2 and two F = 1
2 spin
subsystems. (b) A schematic of the configuration of the methyl group indicating
the geometrical parameters, rHe and θ , involved.
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where HDD, HCSA, and HCSR, respectively, denote the dipolar,
CSA, and CSR Hamiltonians. The indices i and j stand for
the nuclear spins and e for the electron spin. We give explicit
expressions for only those terms pertaining to CSR. Formulae
for CSA and DD interactions may be found in Refs. (19, 30 ).
The CSR Hamiltonian may be written as

HCSR
ie = ζ CSR

ie

2∑
k = −2

(−)kY −k
2

(
θCSR

ie (t)φCSR
ie (t)

)
V (k)

CSR(I i Se), [4]

where I i and I j represent nuclear spins, Se the unpaired electron
spin, Y −k

2 the second-order spherical harmonics, θi j (t) and φi j (t)
the time-dependent polar coordinates denoting the orientation of
the principal axis of the shift tensor with respect to the lab frame,
and V (k) the irreducible spin tensors for the DD, V (i)

DD, CSA, V (i)
CSA

(30, 40 ) and CSR, V (i)
CSR (19 ) (i = 1, 2, 3). V (i)

CSR may be written
in terms of Cartesian (Iz) and shift operators (I+ and I−) as

V (0)
CSR = V (0)

CSA =
√

8

15
Iz

V (±1)
CSR = V (±1)

CSA = ∓ 1√
5

I± [5]

V (±2)
CSR = V (±2)

CSA = 0.

The pre-factor ζ CSR
ie is given by

ζ CSR
ie =

√
24π

5
-hγiγe. [6]

Notice the identical form of the irreducible spin tensors for CSA
and CSR. This means that for all computational purposes CSR
behaves like CSA although the former is a pairwise dipolar and
the latter is a single spin interaction. The consequence of this
is the absence of zero- and double-quantum terms for CSR,
unlike the internuclear DD interaction. This identical form has
been arrived at by shifting the constant coefficients to the spatial
part multiplying the spectral densities, which for each of the
interactions considered here are given by the usual convention

Jr (ω) = ρr
τc

1 + (ωτc)2
, [7]

where r stands for DD, CSA, or CSR; ω is the Larmor frequency
of the protons; and τc is the correlation time assuming isotropic
tumbling of a rigid molecule. The constant coefficient ρCSR can
be expressed as (16 )

ρCSR = 9

4

(
µ0

4π

)2

γ 2
Hr−6

He
-h2

(
geβmγe B0Se(Se + 1)

3kT

)2

. [8]

Both the transverse and the longitudinal nuclear relaxation
enhancement due to the electronic relaxation (those due to the

S contribution) is added explicitly to the diagonal elements of
the Redfield matrix, the spectral densities for which take the
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form

J long
e (ω) = 2

3

(
A
-h

)2

Se(Se + 1)

(
τ2

1 + (ωe − ωI )2τ 2
2

)

+ 2

15
K 2

e

(
3τ1

1 + (ωτ1)2
+ 7τ2

1 + (ωeτ2)2

)
[9]

J tran
e (ω) = 1

15
K 2

e

(
4τ1 + 3τ1

1 + (ωτ1)2
+ 13τ2

1 + (ωeτ2)2

)
,

where K 2
e = K 2Se(Se + 1). In the above τ1 and τ2 are given

by

1

τ1
= 1

τc
+ 1

τM
+ 1

T1e
[10]

1

τ2
= 1

τc
+ 1

τM
+ 1

T2e
,

where T1e and T2e are respectively the electronic longitudinal
and transverse relaxation times, τc is the rotational correlation
time for the electron, and τM is the residence time of the nu-
cleus when chemical exchange needs to be considered. For the
current discussion we neglect τM and τc since, for the case con-
sidered here, the electronic relaxation time is much smaller than
the rotational correlation time. Although a few studies have as-
sumed T1e = T2e, in general, T2e < T1e. We therefore drop the
second and third terms in the parantheses of Eq. [9] since
ωe = γe B0 = 658ωH = 658γ H B0, where ωe is the Larmor fre-
quency of the electron. Moreover it may be noted that ωτ1 � 1
but we still retain the form of that spectral density so that its pres-
ence at the single-quantum frequency for longitudinal relaxation
enhancement and both zero- and single-quantum frequency for
transverse relaxation enhancement is clearly shown. The spec-
tral densities for the paramagnetic relaxation enhancement then
take the form

J long
e (ω) ≈ 2

15
K 2

e

(
3T1e

1 + (ωT1e)2

)
[11]

J tran
e (ω) ≈ 1

15
K 2

e

(
4T1e + 3T1e

1 + (ωT1e)2

)
.

As stated above these are added to the respective diagonal el-
ements of the Redfield matrix. The cross-correlation spectral
density is given by

Jkl(ω) = P2 cos(θ )
√

Jk(ω)Jl(ω), [12]

where P2 cos(θ ) is the well-known Legendre polynomial of or-
der 2 and k and l correspond to any of the relaxation interactions
under consideration here. Finally, it may be noted that any con-
tribution arising from the scalar relaxation mechanism, charac-

terized by A, is also neglected as they are usually orders of mag-
nitude smaller than the terms under consideration. In the case of
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CSR × DD cross-correlation the angle θ is the angle subtended
by the rHe with the normal to the methyl protons plane, coincid-
ing with the methyl C3 rotation axis, as indicated in Fig. 1b.

The treatment of the methyl group is formally equivalent
to the description of a spin- 3

2 nucleus with axially symmetric
quadrupolar and CSA interactions. The explicit formulation of
the relevant Redfield matrix elements (37 ) for the DD, CSA,
and CSR interactions is given in the single element base with
subscripts referring to the energy levels in Fig. 1 by




R1111

R1122

R1133

R1144

R2222

R2233

R2244

R3333

R4444




=




0 −1 −1 0 − 6
5 0 0 2

√
6√

5
0

0 1 0 0 6
5 0 0 2

√
6√

5
0

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 −1 −1 0 − 14
5 0 0 2

√
6√

5
0

0 0 0 0 8
5 0 0 0 0

0 0 1 0 0 0 0 0 0

0 −1 −1 0 − 14
5 0 0 2

√
6√

5
0

0 1 0 0 6
5 0 0 − 2

√
6√

5
0

0 −1 −1 0 − 6
5 0 0 2

√
6√

5
0




×




JDD(0)

JDD(ω)

JDD(2ω)

JCSA(0) + JCSR(0)

JCSA(ω) + JCSR(ω)

JCSA(2ω) + JCSR(2ω)

JCSA×DD(0) + JCSR×DD(0)

JCSA×DD(ω) + JCSR×DD(ω)

JCSA×DD(2ω) + JCSR×DD(2ω)




[13]




R1212

R1223

R1234

R2323

R2334

R3434




=




−1 −1 −1 − 8
15 −2 0 − 4

√
2√

5
− 2

√
2√
5

0

0 0 0 0 4
√

3√
5

0 0 2
√

2√
5

0

0 0 1 0 0 0 0 0 0

−1 −1 −1 − 8
15 − 14

15 0 0 0 0

0 0 0 0 4
√

3√
5

0 0 − 2
√

2√
5

0

−1 −1 −1 − 8
15 0 0 − 4

√
2√

5
2
√

6√
5

0




×




JDD(0)

JDD(ω)

JDD(2ω)

JCSA(0) + JCSR(0)

JCSA(ω) + JCSR(ω)

JCSA(2ω) + JCSR(2ω)

JCSA×DD(0) + JCSR×DD(0)




. [14]
 JCSA×DD(ω) + JCSR×DD(ω)

JCSA×DD(2ω) + JCSR×DD(2ω)


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3. RESULTS

3.1. Simulations

For experimental comparison transfer functions are well
suited. They describe the time evolution and interconversion
of populations and coherences given by

Tlp
R̂t→

∑
l ′≥|p|

f (p)
l ′l (t)Tl ′ p, [15]

where R̂ is the relaxation superoperator, Tlρ are the tensor op-
erators, and the indices l and p are the rank and the coherence
order of the tensor, respectively. The matrix elements R(p)

ll ′ of
the relaxation superoperator, R̂, which are eventually used in
the simulations of the time evolution of transfer functions are
obtained in the spherical tensor base by the employment of the
transformation matrices U (p) given for each of the coherence
p = 0, ±1, ±2 outlined in Refs. (29, 30 ).

The tensor operator of the form Tl0 corresponds to Zeeman
polarization for l = 1, and longitudinal two- and three-spin order
respectively, for l = 2 and l = 3. A transfer function of the form
f (p)
l ′l (t) indicates the generation of p-quantum coherence of rank

l ′ from p-quantum coherence of rank l.
Defining R(p)

n as eigenvalues of each of the subblock of the
Redfield matrix, R̂(p), and anl ′l as elements of the matrix M
formed of eigenvectors of R̂(p) given by

anl ′l = 〈l ′|M |n〉〈n|M−1|l〉, [16]

one can write the transfer functions f (p)
l ′l (t) as a linear combi-

nation of exponential functions as given below:

f (p)
l ′l (t) =

∑
n

anl ′l e
R(p)

n t . [17]

Since we will be dealing exclusively with transverse relax-
ation phenomena here, the generation of second- and third-rank
single-quantum coherences from first-rank transverse magneti-
zation is of prime interest. This time evolution can be represented
as

T1,±1 → f (±1)
11 (t)T1,±1 + f (±1)

21 (t)T2,±1 + f (±1)
31 (t)T3,±1. [18]

T2,±1 is transverse two-spin order, and T3,±1 is transverse three-
spin order. In the vicinity of a paramagnetic center more two-
spin order than three-spin order is generated. This is due to
the greater significance of CSR × DD cross-correlation terms
compared to DD × DD cross-terms, the latter prevailing in dia-
magnetic proteins (28 ) and for residues that are at a large dis-
tance (>12 Å) from the paramagnetic center in a paramagnetic
protein.

Figure 2a shows the transfer functions f (1)(t), f (1)(t), and
11 21
f (1)
31 (t) assuming an electron-nuclear distance of 7 Å and an angle
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FIG. 2. A plot of the transfer functions, f (1)
11 (t), f (1)

21 (t), and – f (1)
31 (t), as a function of the relaxation time with (a) no leakage terms and (b) with the addition of

random field terms amounting to 20% of the magnitude of the diagonal elements of the Redfield density matrix. The leakage terms have a predominant effect on
f (1)
11 (t) and f (1)

31 (t) and a minimal effect on f (1)
21 (t), pointing to the dominance of CSR × DD cross-correlation terms as against CSA × DD terms in a paramagnetic
protein. For the simulation the electron-nuclear distance, rHe , was assumed to be 7 Å, the angle θ (Fig. 1) to be 0◦, the magnetic field, B0, to be 11.74 T, and the

correlation time τc to be 5 ns. A CSA of �σH = 10 ppm was assumed.

of 0◦ for a correlation time of 25 ns. Figure 2b shows the same
plots with random field terms added to the diagonal elements
of the Redfield relaxation matrix. The measure of random field
terms added amount to 20% of the diagonal elements of the
Redfield relaxation matrix. This also shows that any random
field terms influence more the DD × DD cross-terms than the
CSR × DD cross-terms. From this plot it becomes clear that
for a paramagnetic sample, f (1)

21 (t) dominates over other trans-
fer functions as it peaks faster. This establishes the fact that
two-spin order should be more prominent in such systems than
three-spin order which dominates in diamagnetic systems (30 ).
For the parameters selected, maximum of f (1)

21 (t) occurs around
5 ms. Figure 3 shows the maximum amplitude of f (1)

21 (t) plotted
as a function of the electron-nuclear distance, for a fixed correla-

FIG. 3. A plot of the maximum value of the transfer function, f (1)
21 (t) and

– f (1)(t), as a function of the electron-nuclear distance (r ) with the other
31 He

simulation parameters being the same as in Fig. 2. The amount of leakage term
corresponds to the same value as in Fig. 2.
tion time of 5 ns and θ of 0◦. This curve approaches the limiting
curve of the CSA×DD case beyond a distance of approximately
12 Å. Figure 3 also shows the maximum of f (1)

31 (t) plotted as a
function of the electron-nuclear distance, for a fixed correlation
time of 5 ns and θ of 0◦. The two curves of f (1)

31 (t) have been cal-
culated with and without random field terms as indicated in the
figure. The presence of a sizable DD × DD cross-correlation
term that leads to a three-spin order which can be coverted to
triplequantum coherence is evident from these curves. Hence
the practically viable range for exploiting the cross-correlation
effects, for an electronic spin Se = 1

2 case, is between 4 and 10 Å.
Figure 4 shows the angular dependence of f (1)

21 (t) for a fixed
electron-nuclear distance of 7 Å with other parameters remain-
ing the same. The horizontal line shows the contribution of the
CSA × DD cross-term which is not angular dependent for the
bond geometry under consideration. From this figure it is evident
that around the magic angle, 54.7◦, the only contribution to

FIG. 4. A plot of the maximum value of the transfer function, f (1)
21 (t), as a

function of the angle, θ , with the other simulation parameters being the same
as in Fig. 2, showing the full response with both CSR × DD and CSA × DD

cross-correlation terms taken into account. The flat line shows the effect of the
CSA × DD cross-term that acts as an offset to the CSR × DD cross-term.
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FIG. 5. A plot of the maximum value of the transfer functions, f (1)
21 (t)

and – f (1)
31 (t), as a function of the magnetic field, B0, with the other simulation
parameters being the same as in Fig. 2. The response of the transfer function for
both paramagnetic and diamagnetic proteins is shown in the figure.

scores also a previously mentioned aspect of CSR relaxation: it
FIG. 6. (a) A plot of the spectral densities, J (2ω), J (ω), and J (0), for both CSR × DD and CSA × DD cross-correlation terms as a function of the magnetic
field, B0, with the other simulation parameters being the same as in Fig. 2. (b) A plot of the spectral densities, J (2ω), J (ω), and J (0), for DD, CSA, and CSR

affects transverse relaxation more than longitudinal relaxation.
relaxation mechanisms as a function of the magnetic field. The behavior and mag
CSR cross-terms affect the transverse relaxation, T2, times more than the longitud
, AND MÜLLER

f (1)
21 (t) comes from the CSA × DD cross-terms as expected,

while in all other angular regions, cross-terms involving CSR
dominate. This makes the CSR × DD cross-correlation term
a particularly strong and viable tool for arriving at geometric
constraints in paramagnetic systems. In Fig. 5 the maximum of
f (1)
21 (t) is plotted as a function of the magnetic field and the im-

portance of CSR above a field strength of approximately 10 T
may be ascertained from the figure. The predominance of f (1)

31 (t),
meaning the prevalence of the DD×DD cross-term, can also be
seen from the figure, where the maximum of − f (1)

31 (t) is plotted
as a function of the magnetic field. It is highly important for
application on state-of-the-art and future spectrometers to com-
pare the strengths of the cross-correlations as a function of the
magnetic field. Figure 6a shows a plot of the spectral densities,
J (2ω), J (ω), and J (0), for each of the above cross-terms as a
function of B0. It is very clear that CSR×DD predominates over
CSA × DD cross-terms. Figure 6b shows the J (2ω), J (ω), and
J (0) plot for each of the relaxation mechanisms, namely, DD,
CSA, and CSR, as a function of B0. Figure 6 shows the domi-
nance of J (0) spectral density at higher fields. Figure 6b under-
nitude of J (0) over the other spectral densities clearly indicate the fact that the
inal relaxation, T1, times.
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To make an order of magnitude estimate of how CSR influ-
ences both longitudinal and transverse relaxation mechanisms
we examine the contribution to J (0) in the case of transverse
relaxation and J (ω) for longitudinal relaxation. Denoting by Jχ

the spectral density associated with the CSR mechanism and JS

with the hyperfine or S contribution, the following expressions
hold good:

Jχ (0) ∼ 10−14

[
gβ B0Se(Se + 1)γpγe

-h

3kB T

]2
τc

r6
He

JS(0) ∼ 10−14(gβγp)2Se(Se + 1)
1

r6
He

τe

Jχ (ω) ∼ Jχ (0)

(
1

1 + ω2τ 2
c

)
[19]

JS(ω) ∼ JS(0)

(
1

1 + ω2τ 2
e

)

Jχ (0)

JS(0)
∼ B2

0 Se(Se + 1)γ 2
e

-h2

(kB T )2

τc

τe
.

Assuming the following values in SI units for the constants,
B0 = 11.74 T, Se = 1

2 , τc = 10−9 s, and τe = 10−11 s, it may be
seen that the contribution of CSR to transverse and longitudinal
relaxation exceeds that of the contact term at least by an order
of magnitude. This order of magnitude estimation assumes that
the paramagnetic samples under investigation have a fast elec-
tron self-relaxation time constant, at least of the order of femto
seconds, while the rotational correlation time has been assumed
to be of the order of nano seconds.

Figure 7 shows the time evolution of f (1)
21 (t) plotted at a high

field of 20 T without assuming the presence of CSR and the
same at 12 T with CSR present. In a paramagnetic system, the

FIG. 7. A plot of the transfer function, f (1)
21 (t), for a paramagnetic protein at
11.74 T and that for a diamagnetic protein at 20 T, as a function of the relaxation
time, with the other simulation parameters being the same as in Fig. 2.
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presence of additional cross-correlations creates rank 2 tensor
terms at lower magnetic fields than in the case of diamagnetic
systems where only cross-terms involving CSA can be exploited.
This has a direct bearing on the recently introduced experiment,
transverse relaxation-optimized spectroscopy, TROSY (41 ),
which has been addressed already (42 ). The CSR part of the pa-
ramagnetic relaxation in the methyl group can hence be used as a
viable probe for refining the structure of paramagnetic samples.

3.2. Experiments

Experiments were done on a sample of cyano-met-myoglobin,
where Fe3+ is in the low spin (Se = 1

2 ) state. The low spin
Fe3+(Se = 1

2 ) cyanide complex of myoglobin was prepared by
adding excess KCN to the protein solution. The pH of the
protein sample was adjusted to be at 6.0 using DCl. All NMR
experiments were performed at 30◦C on a Bruker Avance DRX-
500 MHz spectrometer equipped with a triple-gradient triple-
resonance inverse detection probe. Solvent signal presaturation
was employed for suppression of residual water signals in all the
experiments. A series of double-quantum (2Q)-filtered experi-
ments was performed to determine the transfer functions using
the pulse sequence indicated in Fig. 8a. In myoglobin the time
evolution of two methyl groups, namely, Ile-99 γ CH3 (M1) and
Ile-99 δCH3 (M2) is monitored, the NMR assignments of which
are known from previous work (43 ) which give 1H signals that
are well separated from others at −3.2 and −3.6 ppm. From the
crystal structure, the rHe and θ of M1 and M2 are 7.13 Å, 35.7◦

and 6.8 Å, 72.59◦, respectively. A number of 2Q-filtered T2 ex-
periments with different relaxation delays were carried out in the
above sample, and the intensities of the resolved signal of the re-
spective methyl groups are plotted as a function of the relaxation
time, which corresponds to the delay, τ , in Fig. 8, represented
by circles. The corresponding transfer function f ±1

21 (t) is plotted
with the known distance and angle and shown as the continuous
line. A good agreement between the experimental and theoret-
ical curve is evident. This suggests that transfer functions are
true representatives of the experimental parameters and a care-
ful scrutiny of them will lead to geometrical constraints. The
figure also shows double-exponential fits to the experimental
curves, the fit taking the expression

I (t) = C(exp(−λ1t) − exp(−λ2t)), [20]

where I (t) is the intensity of the 2Q signal as a function of the
relaxation time, t , and λ1 and λ2 are the inverse time constants.
It may be noticed from Eq. [13] that in principle the evolution
of the transfer function, f ±1

21 (t), which is a measure of I (t) is a
triple exponential which in practice can be approximated by a
double exponential. The transfer function f ±1

21 (t) has the general
expression

f ±1
21 (t) = a121 exp(−λ1t) + a221 exp(−λ2t) + a321 exp(−λ3t).
[21]
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FIG. 8. (a) The pulse sequence used for the 2Q-filtered experiments where τ is the relaxation delay and � is the multiple-quantum filter delay. φ1 is cycled
so as to select, 2Q coherences and φ2 is kept 90◦ out of phase with respect to φ1 so as to preclude any 2Q coherence arising due to the scalar coupling.
(b) A plot of the intensity of the double-quantum peaks corresponding to Ile-99 δCH3 and (c) Ile-99 γ CH3 as a function of the relaxation time, given by the filled
circles. The continuous line in (b) corresponds to a plot of the transfer function f (1)

21 (t) with rHe = 7.13 Å and θ = 35.7◦ which is the geometry of Ile-99 γ CH3

and (c) corresponds to the transfer function f (1)
21 (t) with rHe = 6.8 Å and θ = 72.59◦ which is the geometry of Ile-99 γ CH3. Also shown as a dotted line is the
double-exponential fit to the experimental curves, the details of which are explained in the text. (d) One-dimensional 2Q-filtered spectra for a few τ delays indicated
c
in the figure; 960 transients with a recycle delay of 1.5 s were accumulated for ea

Table 1 gives the values of the exponents (λ’s) from both sim-
ulation, assuming the known geometry parameters, and from a
double-exponential fit to the plot of the experimental intensities
of the two methyl groups corresponding to M1 and M2. It may
be noted that the fitting of the coefficients is arbitrary, since for
a biexponential function they must be equal in magnitude and
opposite in sign, and the overall amplitude depends on other fac-
tors like the splitting of the resonance lines. The a coefficients
are hence not listed in the table.

The good correspondence between the theoretical eigenval-
ues in the transfer function and those obtained from the fit can
be seen from Table 1 with the time constants being a measure

TABLE 1
Coefficients and Exponents of f (1)

21 (t) Obtained from
a Double-Exponential Fit and Simulations

Methyl groups λ1 λ2 λ3

M1, theoretical −837.55 −513.33 −13.50
M1, experimental −835.80 ± 2.65 −507.00 ± 1.54
M2, theoretical −695.53 −549.80 −17.00

M2, experimental −690.23 ± 2.66 −544.35 ± 2.10
h of the experiments.

of both distance and angular constraints. It is worthwhile here
to emphasize the fact that with a 13C-labeled protein, individ-
ual T2 measurements can be made from which the rHe can be
measured, which then means that the methyl curves can be fitted
unequivocally and unambiguously to the angle, thereby greatly
simplifying the analysis.

Employing initial rate approximation and Taylor expansion
one can derive from Eq. [13] the following

d f (1)
21 (t)

dt
= λ2 − λ1, [22]

where λ1 and λ2 are the eigenvalues of Eq. [13] having nonzero
coefficients. From Eq. [14] we see

λ2 − λ1 = 4
√

2

5
[JCSA×DD(0) + JCSR×DD(0)] ∝ 1

r3
P2 cos(θ )

[23]

with the proportionality condition holding good for r < 15 Å.
Here we assume that the CSA of protons, �σH , is of the order of
10 ppm. With this condition the above expression means that the

slope of the initial part of the experimental curve is dependent
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on P2 cos(θ )/r3 although it has an offset term that depends on
the weak contribution from the CSA × DD cross-correlation
term (30).

4. CONCLUSIONS

The source of characteristic signatures of cross-correlation
terms involving CSR in the relaxation behavior of the methyl
protons in a paramagnetic protein, which were first reported in a
previous publication (28 ), has been theoretically outlined here.
The time evolution of the experimental amplitudes of methyl
group signals corresponding to transverse two-spin order gen-
erated by the CSR × DD cross-correlation term correlate well
with the theoretical transfer function derived from the known
distance and angles from the x-ray structure of myoglobin. We
propose to use this physical phenomenon to derive geometry
constraints for three-dimensional structure refinements. Since
from independent transverse relaxation time measurements dis-
tance constraints can be obtained, a single time-constant fit to
such relaxation curves gives a direct measure of the angle. Ex-
periments of this kind can thus lead to novel types of geometry
constraints. To avoid overlap problems it will be necessary to
use 13C-labeled samples to disperse the peaks in a multidimen-
sional experiment. Methyl groups are particularly abundant in
the hydrophobic cores of proteins. Therefore geometry restric-
tion based on methyl axis orientation can be valuable informa-
tion augmenting other geometry constraints provided by either
“classical” NOE-based techniques or more recent experiments
(18, 42 ) based on CSR × DD cross-correlation in NH groups.
In particular, combining the information on the orientation of
the NH bond with that on the CH3-axis orientation in alanine
residues leads to restrictions for the φ-angle and thus can help
in secondary structure discrimination. We expect that such kind
of information will further enhance the study of paramagnetic
biomolecules.
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23. L. Mäler, F. A. A. Mulder, and J. Kowalewski, Paramagnetic cross-
correlation effects in the longitudinal proton relaxation of cis-chloroacrylic
acid in the presence of nickel(II) ions, J. Magn. Reson. A 117, 220–227
(1995).

24. H. Desvaux and M. Gochin, Coherence transfer between nuclear spins
in paramagnetic systems: Effects of nucleus–electron dipole–dipole cross-
correlation, Mol. Phys. 96, 1317–1333 (1999).
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35. I. Bertini, J. Kowalewski, C. Luchinat, and G. Parigi, Cross correlation
between the dipole–dipole interaction and the Curie spin relaxation: The
effect of anisotropic magnetic susceptibility, J. Magn. Reson. 152, 103–108
(2001).

36. R. L. Vold and R. R. Vold, Nuclear magnetic relaxation in coupled spin
systems, Prog. NMR Spectrosc. 12, 79–133 (1978).

37. A. G. Redfield, Theory of nuclear relaxation processes, Adv. Magn. Reson.
1, 1–19 (1965).

38. G. Esposito, A. M. Lesk, H. Molinari, A. Motta, N. Niccolai, and A. Pastore,
Probing protein structure by solvent perturbation of nuclear magnetic reso-
nance spectra, J. Mol. Biol, 224, 659–670 (1992).

39. L. G. Werbelow and D. M. Grant, Intramolecular dipolar relaxation in mul-
tispin systems, Adv. Magn. Reson. 9, 189–299 (1978).

40. L. G. Werbelow and D. M. Grant, Transverse relaxation of three identical
spin- 1

2 nuclei subject to shift anisotropy interactions, J. Magn. Reson. 20,
554–564 (1975).

41. K. Pervushin, R. Riek, G. Wider, and K. Wüthrich, Attenuated T2 relax-
ation by mutual cancellation of dipole–dipole coupling and chemical shift
anisotropy indicates an avenue to NMR structures of very large biological
macromolecules in solution, Proc. Natl. Acal. Sci. USA 94, 12366–12371
(1997).

42. P. K. Madhu, R. Grandori, K. Hohenthanner, P. K. Mandal, and N. Müller,
Geometry dependent two-dimensional heteronuclear multiplet effect in
paramagnetic proteins, J. Biomol. NMR 20, 31–37 (2001).

43. B. J. Hauksson, N. G. La Mar, K. R. Pandey, N. I. Rezzano, and M. K. Smith,
1H NMR study of the role of individual heme propionates in modulating

structural and dynamic properties of the heme pocket in myoglobin, J. Am.
Chem. Soc. 112, 6198–6205 (1990).


	1. INTRODUCTION
	2. PARAMAGNETIC RELAXATION
	FIG. 1.

	3. RESULTS
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	TABLE 1

	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

